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Figure 1. We propose RF-Solver to solve the rectified flow ODE with less error, thus enhancing both sampling quality and inversion-
reconstruction accuracy for rectified-flow-based generative models. Furthermore, we propose RF-Edit to leverage the RF-Solver for image
and video editing tasks. Our methods achieve impressive performance on various tasks, including text-to-image generation, image & video
inversion, and image & video editing.

Abstract

Rectified-flow-based diffusion transformers, such as
FLUX and OpenSora, have demonstrated exceptional per-
formance in the field of image and video generation. De-
spite their robust generative capabilities, these models often
suffer from inaccurate inversion, which could further limit
their effectiveness in downstream tasks such as image and
video editing. To address this issue, we propose RF-Solver,
a novel training-free sampler that enhances inversion pre-
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cision by reducing errors in the process of solving rectified
flow ODEs. Specifically, we derive the exact formulation of
the rectified flow ODE and perform a high-order Taylor ex-
pansion to estimate its nonlinear components, significantly
decreasing the approximation error at each timestep. Build-
ing upon RF-Solver, we further design RF-Edit, which com-
prises specialized sub-modules for image and video editing.
By sharing self-attention layer features during the editing
process, RF-Edit effectively preserves the structural infor-
mation of the source image or video while achieving high-
quality editing results. Our approach is compatible with
any pre-trained rectified-flow-based models for image and
video tasks, requiring no additional training or optimiza-
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tion. Extensive experiments on text-to-image generation,
image & video inversion, and image & video editing demon-
strate the robust performance and adaptability of our meth-
ods. Code is available at this URL.

1. Introduction
Recently, rectified-flow-based generation methods [31]
have demonstrated remarkable performance in generating
high-quality images and videos. Compared with traditional
approaches such as Stable Diffusion [19, 42], their impres-
sive capabilities stem primarily from two aspects. First, rec-
tified flow utilizes a straightforward Ordinary Differential
Equation (ODE), which constructs a continuous straight-
line motion system to produce the desired data distribution.
This simplified training and inference paradigm enables the
model to more effectively learn the underlying distribution
of real image data. Second, most of the latest rectified flow
methods employ the Diffusion Transformer (DiT) [38, 59]
architecture as the backbone, which has shown superior per-
formance compared to traditional U-Net [43] architectures.
As a result, image generation models like FLUX [1] and
video generation models like OpenSora [2], both based on
rectified flow and DiT, have respectively become one of the
state-of-the-art (SOTA) models in Text-to-Image (T2I) and
Text-to-Video (T2V) generation.

Apart from fundamental T2I and T2V tasks, other down-
stream tasks such as reconstruction [16, 35, 46] and edit-
ing [17] have been attracting growing interest. These tasks
typically depend on performing inversion on the source im-
age/video. The inversion process yields the correspond-
ing representation in the noise space, which is followed
by denoising with various conditions provided by users.
Given the robust generative capabilities of rectified-flow-
based models, they are expected to exhibit superior per-
formance on these downstream tasks. However, their per-
formance remains unsatisfactory compared with traditional
methods (based on DDPM and UNets), and research in this
area still lags behind.

Delving into this problem, we identify that the primary
challenge lies in the significant errors during the inversion
process of the rectified flow, which fail to accurately re-
construct the original images or videos (Task 1 and Task
2 in Fig. 1). This limitation further constrains its perfor-
mance on other downstream tasks such as editing. Although
[45] attempted to address this challenge through dynamic
optimal control, its application is restricted to simple im-
age editing scenarios such as stylization and facial editing,
which typically involve simple content and uniform back-
grounds. In contrast, both the image contents and edit-
ing requirements (such as addition, replacement, and global
editing) are considerably more complex in the real world.
Moreover, video editing requires highly consistent tempo-

ral modeling, presenting even greater challenges for editing
algorithms. To the best of our knowledge, there are still no
existing methods that effectively tackle these issues.

Instead of focusing on designing a specific inversion
method, we aim to address the above problem from a more
general and fundamental perspective: the sampler. This is
because the essence of the inversion and generation process
for rectified flow is to employ a sampler that estimates the
solution of rectified flow ODE. Consequently, the primary
source of inaccurate inversion lies in the approximation er-
ror in the solution, which accumulates at each timestep. In-
tuitively, if the ODE is solved more accurately, the accuracy
of inversion can be enhanced subsequently.

Based on this insight, we propose the RF-Solver.
Specifically, we note that the ODE formulation for rectified
flow can be solved directly using the variation of constants
method, yielding an exact formulation of the solutions. For
the nonlinear component of this solution (i.e., the integral
of the neural network), we utilize Taylor expansion for es-
timation. By employing higher-order Taylor expansion, the
ODE can be solved with reduced error, thereby improving
the performance of rectified flow models. RF-Solver is a
generic sampler that can be seamlessly integrated into any
rectified flow model without the need for training or opti-
mization. Experimental results demonstrate that RF-Solver
not only significantly enhances the accuracy of inversion
and reconstruction, but also improves performance on fun-
damental tasks such as T2I generation.

Building upon this, we propose RF-Edit to apply RF-
Solver in editing tasks. Real-world image and video edit-
ing require the model to make precise modifications to a
source image/video while maintaining its overall structure
unchanged. This makes editing a more challenging task
compared to reconstruction. In this scenario, it is inade-
quate to solely rely on the inverted noises as prior knowl-
edge for editing, which could lead to edited results be-
ing excessively influenced by the target prompt, resulting
in a completely different output compared with source im-
age/video. Addressing this problem, we store the V (value)
feature in the self-attention layers at several timesteps dur-
ing inversion. In the process of denoising, these features are
used to replace the corresponding features. Practically, we
design two specific sub-modules for RF-Edit, respectively
leveraging FLUX [1] and OpenSora [2] as the backbone for
image and video editing. With the effective design of RF-
Edit, it demonstrates superior performance in both image
and video domains, outperforming various SOTA methods.

Our core contributions are summarized as follows:
• We propose RF-Solver, a training-free sampler that sig-

nificantly reduces errors in the inversion and reconstruc-
tion processes of the rectified-flow model.

• We present RF-Edit, which leverages RF-Solver for im-
age and video editing, effectively preserving the structural

https://github.com/wangjiangshan0725/RF-Solver-Edit


integrity of the source image/video while achieving high-
quality results.

• Extensive experiments on images and videos demonstrate
the efficacy of our methods, showcasing superior perfor-
mance in both inversion and high-quality editing com-
pared to various existing baselines.

2. Related Work

2.1. Inversion
Inversion maps the real visual data, i.e. image and video, to
a representation in the noise space [14, 23, 34, 35, 44, 50],
which is the reverse process of generation. This represen-
tation captures the essential features and structures of the
original data while allowing for flexibility in manipulation
for various editing applications. Numerous previous inver-
sion approaches have been elaborately designed for diffu-
sion models to achieve remarkable performance. The repre-
sentative method, DDIM inversion [46, 47], adds predicted
noise recursively at each forward step, outputting the final
state as structured noise. To mitigate the discretization error
in DDIM inversion, some efforts have been explored from
the perspective of optimizing null prompt embeddings [35]
and latent variables [44]. Negative prompt inversion [34]
accelerates the inversion process at the cost of fidelity. De-
spite the success of inversion in diffusion models, the ex-
ploration of inversion in SOTA rectified flow models like
FLUX and OpenSora is limited. RF-prior [57] uses the
score distillation to invert the image while it requires a num-
ber of optimizing steps. More recently, [45] introduces an
additional vector field that is conditioned on the source im-
age to improve the inversion. However, its performance im-
provement mainly stems from the information leakage of
the source image during the inversion and reconstruction
process. The error from the original vector field of recti-
fied flow still persists, which would limit the performance
of such method on various downstream tasks.

2.2. Image and Video Editing
Training-free methods for image and video editing [21, 48]
have gained increasing popularity due to their efficiency and
effectiveness. These methods usually invert the source im-
age/video into Gaussian noises and then denoises it condi-
tioned on the target prompt. Existing image editing meth-
ods focus on prompt refinement [41, 52], attention-sharing
mechanism [7, 17, 37, 49], mask guidance [5, 11, 20, 28],
and noise initialization [6, 58]. Video editing introduces
additional complexities due to the need for maintaining
temporal consistency, making it a more challenging task.
Existing video editing methods focus on attention injec-
tion [30, 39, 53], motion guidance [10, 15, 51, 56], la-
tent manipulation [9, 25, 55, 61], and canonical represen-
tation [8, 26, 27, 36]. To date, the editing performance

of rectified-flow-based diffusion transformers has remained
largely under-explored. Although [45] employs FLUX for
image editing, its performance is limited to simple tasks
such as stylization and face editing, and it struggles to effec-
tively maintain the structural information of source images.
Moreover, currently there is no research exploring the video
editing capabilities of rectified-flow-based models.

3. Method
In this section, we present our methods in detail. First, we
introduce the proposed RF-Solver, which significantly en-
hances the precision of inversion and reconstruction. Sub-
sequently, we introduce RF-Edit, an extension of RF-Solver
designed to enable high-quality image and video editing.

3.1. Preliminaries
Rectified Flow [32] facilitates the transport between the
Gaussian Noises distributions π0 and real data distribution
π1 along a straight path. This is achieved by learning a
forward-simulating system given by dZt

dt = v(Zt, t), t ∈
[0, 1] which maps Z0 ∈ π0 to Z1 ∈ π1. In practice,
the velocity field v is parameterized by a neural network
vθ(Zt, t). During training, given X0 ∈ π0 and X1 ∈
π1, the forward process of rectified flow is implemented
through a simple linear combination:

Xt = tX1 + (1− t)X0, t ∈ [0, 1]. (1)

The rectified flow ODE can be derived by differentiating
Eq. (1) with respect to t, as follows:

dXt

dt
= X1 −X0, t ∈ [0, 1]. (2)

Here, X1−X0 serves as the ground truth, and the network
is optimized through mean square error:

min
θ

∫ 1

0

E
[
∥(X1 −X0)− vθ (Xt, t)∥2

]
dt. (3)

During the sampling process, the ODE is discretized and
solved using Euler method. Specifically, the rectified flow
model starts with Gaussian noises ZtN ∈ N (0, I). Given
a series of discrete N timesteps t = {tN , ..., t0}, the model
iteratively predicts vθ(Zti , ti), i ∈ {N, · · · , 1} and then
takes a step forward until generating the images Zt0 , with
the following recurrence relation:

Zti−1 = Zti + (ti−1 − ti)vθ(Zti , ti). (4)

The definition and training process of Rectified Flow is de-
signed to establish a nearly linear transition trajectory be-
tween two distributions, enabling efficient generation with
significantly fewer steps compared to DDPMs [19].
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Figure 2. Analysis of the Inversion-Reconstruction Process. In-
version begins with the source image latent Z̃t0 as the input and
progressively add noise, obtaining Z̃tN ∈ N (0, I). Z̃tN is then
denoised for N timesteps to obtain the reconstruction Zt0 . During
this process, we store the latent Z̃ti and Zti at each time step and
calculate the mean squared error between them.

3.2. RF-Solver
The vanilla rectified flow (RF) sampler demonstrates strong
performance in image and video generation. However,
when applied to inversion and reconstruction tasks, we ob-
serve significant error accumulation at each timestep. This
results in reconstructions that diverge notably from the orig-
inal image (see Fig. 2), further limiting the performance
of RF-based models in various downstream tasks, such as
image and video editing. Delving into this problem, we
notice that the inversion and reconstruction processes in
rectified flow rely on estimating an approximate solution
of the rectified flow ODE at each timestep (see Eq. (4)).
Obtaining more precise solutions for the ODE would ef-
fectively mitigate these errors, leading to improved recon-
struction quality. Based on this analysis, we start by care-
fully examining the differential form of the Rectified flow:
dZt

dt = vθ(Zt, t). This ODE is discretized in the sampling
process. Given the initial value Zti , the ODE can be exactly
formulated using the variant of constant method:

Zti−1
= Zti +

∫ ti−1

ti

vθ(Zτ , τ)dτ. (5)

In the above formula, vθ(Zτ , τ) is the non-linear compo-
nent parameterized by the complex neural network, which
is difficult to approximate directly. As an alternative, we
employ the Taylor expansion at ti to approximate this term:

vθ(Zτ , τ) =

n−1∑
k=0

(τ − ti)
k

k!
v
(k)
θ (Zti , ti) +O

(
(τ − ti)

n
)
,

(6)
where v

(k)
θ (Zti , ti) =

dkvθ(Zti
,ti)

dtk , denoting the k-order
derivative of vθ and O denotes higher-order infinitesimals.
Substituting Eq. (6) into the integral term yields:∫ ti−1

ti

vθ(Zτ , τ) dτ =

n−1∑
k=0

v
(k)
θ (Zti , ti)

∫ ti−1

ti

(τ − ti)
k

k!
dτ

+O
(
(τ − ti)

n
)
. (7)

Algorithm 1 Sampling process of RF-Solver
Input:

vθ ▷ Velocity function
t = [tN , . . . , t0] ▷ Time steps
ZtN ∼ N (0, I) ▷ Initial Gaussian Noise

For i = N to 1 do
∆ti ← 1

2
(ti−1 − ti)

v̂ti ← vθ(Zti , ti)
Zti+∆ti ← Zti +∆tiv̂ti

v̂ti+∆ti ← vθ(Zti+∆ti , ti +∆ti)

v
(1)
ti
← (v̂ti − v̂ti+∆ti)/∆ti ▷ Calculating the Derivatives

Zti−1 ← Zti + (ti−1 − ti)v̂ti +
1
2
(ti−1 − ti)

2v
(1)
ti

Output: Z0

Through the above process, the network prediction term
and its higher-order derivatives are separated from the in-
tegral. Then we notice that the remaining portion in the
integral can be computed analytically:∫ ti−1

ti

(τ − ti)
k

k!
dτ =

[
(τ − ti)

k+1

(k + 1)!

]ti−1

ti

=
(ti−1 − ti)

k+1

(k + 1)!
.

(8)
Substituting Eq. (8) and Eq. (7) into Eq. (5), we derive the
n-th order solution of Rectified flow ODE:

Zti−1 = Zti +

n−1∑
k=0

(ti−1 − ti)
k+1

(k + 1)!
v
(k)
θ (Zti , ti)

+O
(
hn+1
i

)
, (9)

where hi := ti−1 − ti. Eq. (9) indicates that to esti-
mate Zti−1 , we need to obtain the k-th order derivatives
{v(k)

θ (Zti , ti)} for k ∈ {0, · · · , n − 1}. When n = 1,
the formula reduces to the standard rectified flow (Eq. (4)).
In our experiments, we find that setting n = 2 effectively
mitigates the errors, yielding the following formula:

Zti−1
= Zti + (ti−1 − ti)vθ(Zti , ti)

+
1

2
(ti−1 − ti)

2v
(1)
θ (Zti , ti). (10)

Note that v(1)
θ is the first-order derivative of the network

prediction term vθ, which cannot be analytically derived
due to the complex architecture of the neural network. To
estimate this term, we first obtain the network prediction
v̂ti at the timestep ti, i.e., v̂ti = vθ(Zti , ti). Then we step
forward a small timestep ∆t = 1

2 (ti−1− ti), and update the
latents to obtain Zti+∆t = Zti +∆t · v̂ti . Next, we calcu-
late an additional prediction of the network at the timestep
ti +∆t, i.e., v̂ti+∆t = vθ(Zti+∆t, ti +∆t). With v̂ti and
v̂ti+∆t, the first-order derivative of vθ at the timestep ti can
be estimated as:

v
(1)
θ (Zti , ti) =

v̂ti+∆t − v̂ti

∆t
. (11)
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Figure 3. RF-Edit Pipelines. The RF-Edit framework comprises two sub-modules, respectively applied to FLUX [1] for image editing
and OpenSora [2] for video editing. For image editing, we share the feature of Ṽ within the single block self-attention of the FLUX [1]
backbone. For video editing, we share the feature of Ṽ in the spatial attention of the OpenSora [2] backbone.

Substituting Eq. (11) into Eq. (10) results in the practical
implementation of the RF-Solver algorithm. The complete
sampling process for RF-Solver is presented in Algorithm 1.

Besides sampling, inversion seeks to map data back into
noise, which reverses the sampling process. Following pre-
vious methods for DDIM inversion [13, 46], the ODE pro-
cess can be directly reversed in the limit of small steps.
Based on this assumption, the inversion process of RF-
Solver (Eq. (10)) can be directly transformed as:

Z̃ti+1 = Z̃ti + (ti+1 − ti)vθ(Z̃ti , ti)

+
1

2
(ti+1 − ti)

2v
(1)
θ (Z̃ti , ti), (12)

where Z̃ti and Z̃ti+1
denotes the latents during inversion.

Through this high order expansion, the error of the ODE
solution in each timestep is reduced from O

(
(hi)

2
)

to
O
(
(hi)

3
)
, leading to improved performance, particularly in

inversion and reconstruction (see Fig. 2). Beyond inversion
and reconstruction, RF-Solver can also be applied to any
RF-based model (such as FLUX [1] and OpenSora [2]) for
other tasks such as sampling and editing, enhancing perfor-
mance without requiring additional training.

3.3. RF-Edit
Incorporating higher-order terms enables RF-Solver to sig-
nificantly reduce errors in the ODE-solving process, im-
proving both sampling quality and inversion accuracy. Fur-
thermore, we extend the application of RF-Solver to real-
world image and video editing tasks, which are more chal-
lenging than reconstruction. In these scenarios, maintain-
ing the content and structure of the original image is cru-
cial. For instance, when adding new objects to a source
image, other unrelated regions should remain unaffected by

the editing process. However, directly applying RF-Solver
during the inversion and denoising stages may cause the
model to be overly influenced by the target prompt, lead-
ing to unintended modifications in other parts of the image
or video (e.g., altering the unrelated which is not mentioned
in the editing prompt). This issue is common across various
existing editing methods [17, 45, 49].

To address this problem, we propose RF-Edit, which
incorporates features from the inversion process into the
denoising procedure. Specifically, during the last n steps
of inversion, we extract and store the Value feature {Ṽm

tk
}

and {Ṽm
tk+∆tk

} from the self-attention layers in the last
M transformer blocks at each timestep k. Here, k ∈
{n, n + 1, · · · , N} and m ∈ {1, · · · ,M}. This process
can be formulated as follows:

{Ṽm
tk
} = Extract

(
vθ(Z̃tk , tk)

)
(13)

{Ṽm
tk+∆tk

} = Extract
(
vθ(Z̃tk+∆tk , tk +∆tk)

)
, (14)

where Z̃tk and Z̃tk+∆tk denote the latents during inversion
for RF-Solver.

During the first n timesteps of denoising, considering the
mth transformer block at the timestep k, the original self-
attention in the network vθ can be formulated as:

Fm
tk

= Attention(Qm
tk
,Km

tk
,Vm

tk
), (15)

where Fm
tk

denotes the output feature of the self-attention
module and Qm

tk
,Km

tk
,Vm

tk
represent query, key and value

for attention during the denoising process, respectively.
In RF-Edit, the above self-attention mechanism is modi-

fied to cross-attention where Vm
tk

is replaced by Ṽm
tk

,

Fm
tk

′ = Attention(Qm
tk
,Km

tk
, Ṽm

tk
). (16)
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Figure 4. Qualitative Results of Image and Video Reconstruction. Our method (The second row) illustrates better performance com-
pared with the rectified flow baselines (The third row) on both image and video reconstruction.

The modified output feature Fm
tk

′ is then passed to the sub-
sequent modules for further processing.

Similarly, this feature-sharing process is also adopted in
the derivative calculation process of RF-Solver:

Fm′
tk+∆tk

= Attention(Qm
tk+∆tk

,Km
k+∆tk

, Ṽm
k+∆tk

). (17)

The proposed RF-Edit framework enables high-quality
editing while preserving structural information. Building
on this concept, we design two sub-modules for RF-Edit,
specifically tailored for image editing and video editing. For
image editing, we use FLUX [1] as the backbone, which
comprises several double blocks and single blocks. Dou-
ble blocks independently modulate text and image features,
while single blocks concatenate these features for unified
modulation. In this architecture, RF-Edit shares features
within the single blocks, as they capture information from
both the source image and the source prompt, enhancing the
ability of the model to preserve the structural information
of the source image. For video editing, we employ Open-
Sora [2] as the backbone. The DiT blocks in OpenSora in-
clude spatial attention, temporal attention, and text cross-
attention. Within this architecture, the structural informa-
tion of the source video is captured in the spatial attention
module, where we implement feature sharing.

4. Experiment

4.1. Setup
Baselines. We select the vanilla Rectified Flow sampler as
the primary baseline for all tasks. Additionally, for image
editing, we compare our method with P2P [17], DiffEdit
[12], SDEdit [33], PnP [49], Pix2pix [37] and RF-Inversion
[45]. For video editing tasks, we compare our methods with
FateZero [39], FLATTEN [10], COVE [51], RAVE [25],
Tokenflow [15]. Detailed experimental settings of these
methods are provided in the Appendix.
Implementation Details. In the experiment, we adopt the
guidance-distilled variant of FLUX [1] for image tasks and
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Figure 5. Qualitative Results of Text-to-Image Generation.
With the RF-Solver, the model can generate images with higher
quality (The first row) than baselines (The Second row).

Metric FID (↓) Clip Score (↑)

RF 26.55 31.01
Ours 25.45 31.09

Table 1. Quantitive results on Text-to-Image Generation. RF-
Solver outperforms the vanilla RF sampler.

OpenSora [2] for video tasks. For sampling, we set the de-
noising step to 10 for our method. For reconstruction and
editing, the inversion and denoising steps are set to 30. The
derivative computation in RF-Solver requires an additional
forward pass, resulting in the network needing to forward
twice at each timestep. As a result, when comparing our
method with the Rectified Flow baselines, we set the num-
ber of timestep for the vanilla Rectified Flow to be twice
that of our method in order to maintain the same number
of function evaluations (NFE) to ensure a fair comparison.
Both the baseline and our method are conducted on a single
A100 GPU with 40GB memory.
Evaluation Metrics For text-to-image sampling, we ran-
domly select 10k images from the MSCOCO validation
set [29] and report the FID [18] and Clip Score [40]. For
the inversion and reconstruction task, we report the Mean
Square Error (MSE), LPIPS [60], SSIM [54], and PSNR
[24]. For image editing tasks, we report the Clip Score
[40], which reflects whether the edited images align with
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the target prompt, and LPIPS [60], which reflects whether
the edited images preserve the content of the source images.
For video editing tasks, we adopt the metric proposed by
[22], including Subject Consistency (SC), Motion Smooth-
ness (MS), Aesthetic Quality (AQ), and Imaging Quality
(IQ). SC and MS assess the temporal consistency of the
edited video, while AQ and IQ assess the visual quality.

4.2. Text-to-image Sampling
We compare the performance of our method with the vanilla
rectified flow on the text-to-image generation task. Both the
quantitative (Tab. 1) and qualitative results (Fig. 5) demon-
strate the superior performance of RF-Solver in fundamen-
tal T2I generation tasks, producing higher-quality images
that align more closely with human cognition.

4.3. Inversion and Reconstruction
We conduct experiments on inversion and reconstruction for
both image and video modalities, comparing our methods
with the vanilla rectified flow sampler. For image inver-
sion and reconstruction, we use images from the MSCOCO
dataset, and for video inversion and reconstruction, we se-
lect videos from social media platforms such as TikTok and
other publicly available sources [3, 4]. We use GPT-4.0 to
annotate the content of the images and videos in detail, and
then manually polish the GPT-generated content. These an-
notations are used as the source and target prompts for in-
version and reconstruction.

Mehtod MSE (↓) LPIPS (↓) SSIM (↑) PSNR (↑)

image RF 0.0268 0.6253 0.7626 28.28
Ours 0.0094 0.4242 0.9271 29.83

video RF 0.0206 0.4159 0.8134 18.12
Ours 0.0139 0.3299 0.8805 18.32

Table 2. Quantitative Results on Inversion and Reconstruction.
Our methods significantly improve the reconstruction accuracy of
both images and videos.

Quantitive Comparison. The quantitative comparisons
(Tab. 2) are conducted on both images and videos to illus-
trate the similarity between the source and reconstruction
results. Our method demonstrates superior performance
across all four metrics compared with vanilla rectified flow.
Qualitative Comparison. RF-Solver effectively reduces
the error in the solution of RF ODE, thereby increasing the
accuracy of the reconstruction. As illustrated in Fig. 4(a),
the image reconstruction results using vanilla rectified flow
exhibit noticeable drift from the source image, with sig-
nificant alterations to the appearance of subjects such as
cake, church, train, and jeep. For video reconstruction, as
shown in Fig. 4(b), the baseline reconstruction results suffer
from distortion. In contrast, RF-Solver significantly allevi-
ate these issues, achieving more satisfactory results.

4.4. Editing
We conduct experiments to evaluate the image and video
editing performance of our methods. Image editing usu-
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Figure 7. Qualititive Comparison of Video Editing. The first video has 200 frames with a resolution of 512× 512, and the second video
has 60 frames with a resolution of 1024 × 768 (we compress the frames for a neat layout). Our method outperforms various previous
SOTA video editing methods, especially excelling in dealing with complex prompts.

P2P DiffEdit SDEdit PnP Pix2Pix RF-Inv Ours

LPIPS (↓) 0.419 0.157 0.394 0.080 0.155 0.318 0.149
Clip Score (↑) 30.70 32.68 31.61 30.58 32.33 33.02 33.66

Table 3. Quantitative Results of Image Editing. RF-Edit can
effectively edit the images according to the prompts while keeping
the unrelated regions unchanged.

ally involves replacing the subject in the image with another
one, adding new items, and global editing. For the first two
types of editing, the background of the source image is ex-
pected to remain unchanged after editing. For global editing
such as style transfer, the overall structure of the source im-
age is expected to remain unchanged. Compared to image
editing, video editing is much more challenging due to the
complexity of modeling temporal motions in videos. Re-
cent mainstream video editing methods usually focus on re-
placing the subjects and performing global editing.
Quantitative Comparison. For image editing, we perform
quantitative comparison between our methods and base-
lines (Tab. 3), reporting the Clip score and LPIPS. Our
method outperforms all other methods in Clip score, in-
dicating that the edited images align well with the user-
provided prompts. For LPIPS, it is noted that PnP [49] has
a much lower value than all other methods. Based on the
qualitative results (Fig. 6), it can be seen that PnP is only
suitable for editing cases that do not significantly modify
the structure or shape of the source image (such as chang-
ing red roses into yellow sunflowers). For shape editing,
such as modifying a car into a motorbike, PnP fails to edit
this case, resulting in an image very similar to the source.
Consequently, although PnP has the lowest LPIPS score, its
clip score is the lowest.

For video editing, we compare our methods with base-
line methods using the VBench [22] metrics (Tab. 4). The
results illustrate that our methods successfully maintain
temporal consistency in long videos, achieving the high-
est Subject Consistency (SC) and Motion Smoothness (MS)
scores. Additionally, our method demonstrates superior vi-
sual quality, outperforming the baselines at Aesthetic Qual-
ity (AQ) and Image Quality (IQ).
Qualitative Comparison. For image editing, we com-

FateZero Flatten COVE RAVE Tokenflow Ours

SC (↑) 0.9382 0.9420 0.9433 0.9292 0.9439 0.9501
MS (↑) 0.9611 0.9528 0.9697 0.9519 0.9632 0.9712
AQ (↑) 0.6092 0.6329 0.6717 0.6586 0.6742 0.6796
IQ (↑) 0.6898 0.7024 0.7163 0.6917 0.7128 0.7207

Table 4. Quantitative Results of Video Editing. RF-Edit outper-
forms a number of previous SOTA video editing methods.

pare the performance of our methods with several base-
lines across different types of editing tasks (Fig. 6). The
baseline methods often suffer from background changes or
fail to perform the desired edits. In contrast, our methods
demonstrate satisfying performance, effectively achieves a
balanced trade-off between the fidelity to the target prompt
and preservation of the source image. To be noticed, al-
though RF-inversion [45] also uses the rectified flow model
for image editing (third row in Fig. 6), the structure of the
source image which is unrelated to editing prompt (such as
background and human appearance) is modified obviously.

For video editing, we primarily evaluate the performance
of our methods on long videos (200 frames) and high-
resolution videos (1280 × 768). Furthermore, we assess
the performance on complicated videos and prompts where
there are multiple objects in the video, and the user has
different editing requirements for each object. The qual-
itative results are shown in Fig. 7. Our method success-
fully handles complicated editing cases (e.g., modifying the
leftmost lion among three lions into a white polar bear and
changing the other two small lions into orange tiger cubs),
whereas all other baseline methods fail in this scenario.
Our method also demonstrates strong performance in global
editing tasks, such as transforming scenes into autumn.

4.5. Ablation Study
We conduct ablation studies to illustrate the effectiveness of
RF-Solver and RF-Edit. Without loss of generality, these
ablation studies are performed on the image tasks using
FLUX [1] as the base model.
Taylor Expansion Order of RF-Solver. We investi-
gated the impact of the Taylor expansion order in RF-
Solver (Tab. 5) under the same NFE across different orders.



Metric RF RF-Solver-2 RF-Solver-3

Sampling FID (↓) 26.55 25.45 25.37
Clip Score (↑) 31.01 31.09 31.09

Inversion MSE (↓) 0.0268 0.0094 0.0131
LPIPS (↓) 0.6253 0.4242 0.4817

Editing LPIPS (↓) 0.1524 0.1494 0.1503
Clip Score (↑) 32.97 33.66 33.18

Table 5. Ablation Study on the Taylor Expansion Order. We
choose the 2-order expansion (i.e. RF-Solver-2) for the down-
stream tasks for its effectiveness and simplicity.
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Figure 8. Ablation Study of Feature-Sharing Step in RF-Edit.
A too-small feature-sharing step leads to inconsistency between
source and target images. On the other hand, a too-large feature-
sharing step can cause the failure of editing.

The second-order expansion demonstrated a significant im-
provement across various tasks compared to the first-order
expansion (i.e., the vanilla rectified flow). However, higher-
order expansions did not yield further enhancements. We
speculate that this is primarily due to higher-order Tay-
lor expansions requiring more inference steps per timestep.
With a fixed NFE, this results in a reduced overall num-
ber of timesteps compared to lower-order expansions, lead-
ing to suboptimal performance. Moreover, computing the
higher-order derivatives of vθti substantially increases the
complexity of the algorithm, posing challenges for practical
applications. Consequently, we predominantly employed
second-order expansion in our experiments.
Feature Sharing Steps of RF-Edit. RF-Edit leverages fea-
ture sharing to maintain the structural consistency between
original images and edited images. However, an excessive
number of feature-sharing steps may result in the edited out-
put being overly similar to the source image, ultimately un-
dermining the intended editing objectives (Fig. 8). To inves-
tigate the impact of feature-sharing steps on editing results,
we incrementally increase the number of feature-sharing
steps applied to the same image. Due to the varying lev-
els of difficulty that different images presented to the model,
the optimal number of sharing steps may differ across cases.
Experimental results reveal that setting the sharing step to 5
effectively meets the editing requirements for most images.
Additionally, we can customize the sharing step for each

image to identify the most satisfying outcome.

5. Conclusion
In this paper, we propose RF-Solver, a versatile sampler for
the rectified flow model that solves the rectified flow ODE
with reduced error, thus enhancing the image and video gen-
eration quality across various tasks such as sampling and
reconstruction. Based on RF-Solver, we further propose
RF-Edit, which achieves high-quality editing performance
while effectively preserving the structural information in
source images or videos. Extensive experiments demon-
strate the versatility and effectiveness of our methods.
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